Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Struct Biotechnol J ; 18: 2200-2208, 2020.
Article in English | MEDLINE | ID: covidwho-2268788

ABSTRACT

In less than eight months, the COVID-19 (coronavirus disease 2019) caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus has resulted in over 20,000,000 confirmed cases and over 700,000 deaths around the world. With the increasing worldwide spreading of this disease, the lack of effective drugs against SARS-CoV-2 infection makes the situation even more dangerous and unpredictable. Although many forces are speeding up to develop prevention and treatment therapeutics, it is unlikely that any de novo drugs will be available in months. Drug repurposing holds the promise to significantly save the time for drug development, since it could use existing clinic drugs to treat new diseases. Based on the "steric-clashes alleviating receptor (SCAR)" strategy developed in our lab recently, we screened the library of clinic and investigational drugs, and identified nine drugs that might be repurposed as covalent inhibitors of the priming proteases (cathepsin B, cathepsin L, and TMPRSS2) of the spike protein of SARS-CoV-2. Among these hits, five are known covalent inhibitors, and one is an anti-virus drug. Therefore, we hope our work would provide rational and timely help for developing anti-SARS-CoV-2 drugs.

3.
Journal of the Mexican Chemical Society ; 66(1):130-153, 2022.
Article in English | Web of Science | ID: covidwho-1631396

ABSTRACT

Covid-19 has resulted in a worldwide epidemic (pandemic) with high morbidity and mortality, which has generated efforts in various areas of research looking for safe and effective treatments to combat the virus that generates this disease: SARS-CoV-2. However, several viruses have been emerged/adapted in the last few decades, also affecting the respiratory system. According to the world health organization (WHO), lower respiratory tract infections (LRTIs) are one of the leading causes of death worldwide, and viruses are playing important roles as the cause of these infections. In contrast to the vast repertoire of antibiotics that exist to treat bacteria-caused LRTIs, there are a very few antivirals approved for the treatment of virus-caused LRTIs, whose approach consists mainly of drug reuse. This minireview deals on the main viral pathogens that cause LRTIs and some of the most relevant antivirals to counter them (available drugs and molecules in research/clinical trials), with concise comments of their mechanism of action.

4.
F1000Res ; 9: 129, 2020.
Article in English | MEDLINE | ID: covidwho-627045

ABSTRACT

We prepared the three-dimensional model of the SARS-CoV-2 (aka 2019-nCoV) 3C-like protease (3CL pro) using the crystal structure of the highly similar (96% identity) ortholog from the SARS-CoV. All residues involved in the catalysis, substrate binding and dimerisation are 100% conserved. Comparison of the polyprotein PP1AB sequences showed 86% identity. The 3C-like cleavage sites on the coronaviral polyproteins are highly conserved. Based on the near-identical substrate specificities and high sequence identities, we are of the opinion that some of the previous progress of specific inhibitors development for the SARS-CoV enzyme can be conferred on its SARS-CoV-2 counterpart.  With the 3CL pro molecular model, we performed virtual screening for purchasable drugs and proposed 16 candidates for consideration. Among these, the antivirals ledipasvir or velpatasvir are particularly attractive as therapeutics to combat the new coronavirus with minimal side effects, commonly fatigue and headache.  The drugs Epclusa (velpatasvir/sofosbuvir) and Harvoni (ledipasvir/sofosbuvir) could be very effective owing to their dual inhibitory actions on two viral enzymes.


Subject(s)
Benzimidazoles/pharmacology , Betacoronavirus/drug effects , Carbamates/pharmacology , Coronavirus Infections , Cysteine Endopeptidases/chemistry , Fluorenes/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Pandemics , Pneumonia, Viral , Viral Nonstructural Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Drug Repositioning , Humans , Pneumonia, Viral/drug therapy , SARS-CoV-2
5.
Biomed J ; 43(4): 368-374, 2020 08.
Article in English | MEDLINE | ID: covidwho-342672

ABSTRACT

BACKGROUND: New therapeutic options to address the ongoing coronavirus disease 2019 (COVID-19) pandemic are urgently needed. One possible strategy is the repurposing of existing drugs approved for other indications as antiviral agents for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the commercial unavailability of SARS-CoV-2 drugs for treating COVID-19, we screened approximately 250 existing drugs or pharmacologically active compounds for their inhibitory activities against feline infectious peritonitis coronavirus (FIPV) and human coronavirus OC43 (HCoV-OC43), a human coronavirus in the same genus (Betacoronavirus) as SARS-CoV-2. METHODS: FIPV was proliferated in feline Fcwf-4 cells and HCoV-OC43 in human HCT-8 cells. Viral proliferation was assayed by visualization of cytopathic effects on the infected Fcwf-4 cells and immunofluorescent assay for detection of the nucleocapsid proteins of HCoV-OC43 in the HCT-8 cells. The concentrations (EC50) of each drug necessary to diminish viral activity to 50% of that for the untreated controls were determined. The viabilities of Fcwf-4 and HCT-8 cells were measured by crystal violet staining and MTS/PMS assay, respectively. RESULTS: Fifteen out of the 252 drugs or pharmacologically active compounds screened were found to be active against both FIPV and HCoV-OC43, with EC50 values ranging from 11 nM to 75 µM. They are all old drugs as follows, anisomycin, antimycin A, atovaquone, chloroquine, conivaptan, emetine, gemcitabine, homoharringtonine, niclosamide, nitazoxanide, oligomycin, salinomycin, tilorone, valinomycin, and vismodegib. CONCLUSION: All of the old drugs identified as having activity against FIPV and HCoV-OC43 have seen clinical use in their respective indications and are associated with known dosing schedules and adverse effect or toxicity profiles in humans. Those, when later confirmed to have an anti-viral effect on SARS-CoV-2, should be considered for immediate uses in COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Drug Repositioning/methods , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL